
16	 ; LO G I N : VO L . 35, N O. 1

J a r l e B j ø r g e e n g e n

Puppet and
Cfengine compared:
time and resource
consumption
Jarle Bjørgeengen has been working with
UNIXes, storage, and HA clusters for about a
decade. He is now a master’s student at Oslo
University College, and works for the UNIX
group of the central IT department (USIT) of
the University of Oslo.

jarle.bjorgeengen@usit.uio.no

D u r i n g t h e m a s t e r ’ s p r o g r a m at
Oslo University College, I was required
to define and carry out a set of scientific
experiments. As both graduate student and
member of a project evaluating configura-
tion management tools for the University
of Oslo’s IT department [9], I was looking
for an experiment that would serve both of
these roles. The project was about evaluat-
ing Cfengine [3] and Puppet [5] against our
existing script-based solution.

My experiment needed to fulfill the criteria of
scientific measurability and bringing a new and
valuable approach to the decision-making process.
I chose to compare time and resource consumption
in Puppet and Cfengine 3 tools when carrying out
identical configuration checks and actions.

This would be useful information to have for a
tool to be used on a large scale, since the time and
resources used limit the scope of managed configu-
ration during a certain period. Time usage for the
state compliance verification process is of particu-
lar interest, since it will affect the frequency and/or
scope of the configuration verified.

Equipment and Tool Setup

The experiment was run on a PC with the follow-
ing specifications:

CentOS 5.2 , 2.6.18-92.1.22.el i686 ■■

MSI MS-6380E (VIA KT333 based) motherboard ■■

1024 MB RAM ■■

AMD Athlon XP2200 (1.8GHz / 266MHz FSB) ■■

256KB cache
Quantum fireball 7200 rpm / 30GB / 58169 Cyl / ■■

16 Head / 63 sectors

In both tools it is the configuration agent that does
the job of converging to desired state. In Puppet
a server component is mandatory, since it is the
server that provides the agent with its configura-
tion. The latest stable version of Puppet at the time
the experiment was done was version 0.24.7 and
that is the version used in the experiment.

Cfengine’s configuration agent is independent of
a server component, but can be configured to be
used with a server component if desired. Cfengine
version 3.0.1b3 was downloaded and was compiled
according to the installation part of the reference
manual [2].

; LO G I N : Fe b rua ry 201 0	 Pu ppe t a n d Cfe ngin e Com pa re d	 17

Installing Puppet is easy on CentOS 5 using the EPEL [1] yum repository.

rpm -Uvh http://download.fedora.redhat.com/pub/epel/5/i386/epel-re-
lease-5-3.noarch.rpm
yum install puppet
yum install puppet-server
service puppetmaster start
chkconfig puppetmaster on

This also automatically resolves and installs the dependencies needed for
Puppet to work (ruby-libs, ruby, facter, ruby-shadow, augeas-libs, ruby-
augeas).

Installing Cfengine 3 took a bit more effort:

Dependencies:

yum install db4-devel
yum install byacc
yum install openssl-devel
yum install flex
yum install gcc

Cfengine:

wget http://www.cfengine.org/downloads/cfengine-3.0.1b3.tar.gz
tar zxvf cfengine-3.0.1b3.tar.gz
cd cfengine-3.0.1b3
./configure && make && make install && cp /usr/local/sbin/cf-* /var/cfengine/
bin/

Methodology

The workload chosen for the measurements reflects comparable activities of
a configuration management tool. There are three main categories of work:

File permissions ■■

File contents ■■

/etc/hosts entries ■■

The host entries measurement differs a little bit from the file permission
and file content workloads. This is because, in Puppet, host entries means a
special type of resource, which ends up as file edits to the /etc/hosts file in
the end. In Cfengine this is just one form of file-editing operation directly in
the configuration language. This difference might make the /etc/hosts entries
workload less directly comparable than the file permission and content
workloads.

Each type of work was measured in two ways:

With a known deviation from the tool’s configuration applied up front. 1.	
Hence the tool will need to converge the deviation to compliance.

With the tool’s configuration applied up front. Hence the tool will do veri-2.	
fication only.

This expands to six measurements for each tool, and each measurement was
repeated 40 times. All measurements and application of preconditions for
each measurement were done in a shell script which ran the same measure-
ments 40 times.

All workload combinations measured are summarized in the following table:

18	 ; LO G I N : VO L . 35, N O. 1

No. Type Converge or Verify Tool configfile

  1 Permissions Converge cf3 cf3-perms.cf

  2 Permissions Converge puppet puppet-perms.cf

  3 Content Converge cf3 cf3-content.cf

  4 Content Converge puppet puppet-content.cf

  5 Hosts records Converge cf3 cf3-hosts.cf

  6 Hosts records Converge puppet puppet-hosts.cf

  7 Permissions Verify cf3 cf3-perms.cf

  8 Permissions Verify puppet puppet-perms.cf

  9 Content Verify cf3 cf3-content.cf

10 Content Verify puppet puppet-content.cf

11 Hosts records Verify cf3 cf3-hosts.cf

12 Hosts records Verify puppet puppet-hosts.cf

Each amount of work was scaled up such that it was possible to actually
measure some resource and time consumption for both tools. For the file
permissions and file content tests, a file tree with known content and per-
missions was created under a test directory /var/tmp/file_tests.

The test file tree was made each time as follows:

TESTDIR=/var/tmp/file_tests
if [[-d $TESTDIR]]
then
	 rm -rf $TESTDIR
fi
for i in `seq 1 10`
do
	 mkdir -p $TESTDIR/dir_$i
	 for j in `seq 1 10`
	 do
		 echo “Some testline” > $TESTDIR/dir_$i/file_$j
	 done
done

Run as root, this creates directories with ownership root:root and mode 755
and files with ownership root:root and mode 644.

For the file permissions, the tools’ work was to converge from the default
permissions to ownership root:bin and mode 755 for all files and directories.

Here’s the Puppet configuration for applying file permissions (puppet-perms.
cf):

class fix_perms {
	 file { “/var/tmp/file_tests”:
		 owner => “root”,
		 group => “bin”,
		 mode => 0755,
		 recurse => inf,
		 backup => false,
	 }
}

; LO G I N : Fe b rua ry 201 0	 Pu ppe t a n d Cfe ngin e Com pa re d	 19

node localhost {
	 include fix_perms
}

And here’s the Cfengine configuration for applying file permissions
(cf3-perms.cf):

body common control
{
bundlesequence => { “perms” };
}

bundle agent perms
{

files:
	 “/var/tmp/file_tests/”
	 pathtype => “literal”,
	 perms => passthrough(“0755”,”root”,”bin”),
	 depth_search => recurse(“inf”);
}

body depth_search recurse(d)
{
	 depth => “$(d)”;
}

body perms passthrough(m,o,g)
{
	 mode => “$(m)”;
	 owners => { “$(o)” };
	 groups => { “$(g)” } ;
}

For file content, the tools’ work was to ensure some particular content in the
same files.

Here’s the Puppet configuration for applying file content (puppet-content.cf):

class fix_contents {
	 file { “/var/tmp/file_tests”:
		 content => “Trallala\n”,
		 recurse => inf,
		 backup => false,
	 }
}

node localhost {
	 include fix_contents
}

And here’s the Cfengine configuration for applying file content
(cf3-content.cf):

body common control
{
bundlesequence => { “content” };
}

bundle agent content
{

files:

20	 ; LO G I N : VO L . 35, N O. 1

	 “/var/tmp/file_tests/.*/.*”
	 edit_defaults => no_backup,
	 edit_line => en_liten_trall;
}

bundle edit_line en_liten_trall
{
	 delete_lines:
	 “.*”;
	 insert_lines: “Trallala”;
}

body edit_defaults no_backup
{
	 edit_backup => “false”;
}

For host entries, the tools’ work was to ensure that all specified host-to-IP
mappings were present in /etc/hosts.

Here’s the Puppet configuration for applying host entries (puppet-hosts.cf):

class my_hosts {
	 host { “private1.localdomain.com”:
	 ip => “10.0.0.1”,
	 ensure => present,
}

host { “private2.localdomain.com”:
	 ip => “10.0.0.2”,
	 ensure => present,
}

(...)

host { “private254.localdomain.com”:
	 ip => “10.0.0.254”,
	 ensure => present,
	 }
}

node localhost {
	 include my_hosts
}

And here’s the Cfengine configuration for applying host entries
(cf3-hosts.cf):

body common control
{
	 bundlesequence => { “hosts” };
}

bundle agent hosts
{
	 vars:

	 “my_hosts” slist => {
	 “10.0.0.1 private1.localdomain.com”,

	 (...)

	 “10.0.0.253 private253.localdomain.com”,
	 “10.0.0.254 private254.localdomain.com”

; LO G I N : Fe b rua ry 201 0	 Pu ppe t a n d Cfe ngin e Com pa re d	 21

};

files:

	 “/etc/hosts”
	 edit_defaults => no_backup,
	 edit_line => host_ensure(“@(hosts.my_hosts)”);
}

bundle edit_line host_ensure(record)
{
	 insert_lines:

“$(record)”;

}

body edit_defaults no_backup
{
	 edit_backup => “false”;
}

When measuring verification time, the script converged configuration of the
tool before taking the measurements. This way it is unlikely that the pre-
condition is anything other than the desired state in the tool configuration;
hence the measured values when doing this are verification only.

Application of the configurations with Puppet was done like this:

/usr/sbin/puppetd --no-daemonize --onetime

Application of the configurations with Cfengine was done like this:

/var/cfengine/bin/cf-agent --no-lock

To have as close to equal starting points as possible for the tests, all block
device buffers were dropped before each test by using:

sysctl -w vm.dropcaches = 3

The Scientific Method

When measuring alternatives there will be uncertainty in the measurements.
The uncertainty is defined as error, or noise. The total error was quantified
using repeated measurements and statistical methods for finding the confi-
dence intervals of the differences between alternatives. Confidence intervals
of the differences comes with a probability of the true value being inside the
interval. For the confidence interval to have any utility, the probability that
the true value is inside the interval must be high. Higher probability widens
the confidence interval, and vice versa. A commonly chosen value of this
probability is 0.95.

If confidence intervals of the two alternatives overlap, it is impossible to say
that the difference is not caused by random fluctuations. If they don’t over-
lap, there is no evidence to suggest that there is not a statistically significant
difference. The chosen probability quantifies the certainty of being right in
assuming there is a true difference [10, p. 43].

22	 ; LO G I N : VO L . 35, N O. 1

Plotting the values shows random variations, but the true standard deviation
of the underlying population is not known. The student’s t distribution takes
this into account and is commonly used for detecting statistically significant
differences between two alternatives [8]. The student’s t distribution, or more
precisely the t-test, was used to identify any statistically significant differ-
ences in the experiment results.

The tool “gnu time” [4] (version 1.7 release 27.2.2) was used for measuring
time and resource consumption of each operation. For each measurement,
three metrics were logged:

Total time used ■■

Number of CPU seconds (system + user) ■■

Number of involuntary context switches ■■

The values were logged in semicolon-separated files, one for each $measure-
ment-$tool containing 40 lines of data. Each column of measurements then
represents one metric (time, CPU, or CSWITCH) measurement repeated 40
times. These vectors were used for calculating sample means and confidence
intervals using the free statistic program R [6].

For all 12x3 metrics, the t-test functions of R were used to compare pairs of
vectors of 40 numbers, each representing the measured values of each tool,
respectively. The outcome of each comparison is the sample mean of the dif-
ference between vectors and its confidence interval given a certain probabil-
ity that the true value is within the interval.

The probability used for the tests was 0.99, meaning there is 99% probabil-
ity that the true value of the sample mean of the differences is within the
confidence intervals produced by the t-tests.

All t-tests were done as follows:

diff = t-test(puppet_vector,cfengine_vector,conf.level = 0.99)

and the return values are fetched out as follows in R:

c(diff$estimate[1],diff$estimate[2],diff$conf.int[1],diff$estimate[1] -
diff$estimate[2] , diff$conf.int[2])

The five values produced from the two statements above correspond to col-
umns 3–7 in the results table.

Results

The output of the eighteen t-tests in R is summarized in the following table.

Table legend:

Type of workload: Permission/Content/Host Converge/Verify 1.	

Resource/time measurement 2.	

Sample mean value for Puppet 3.	

Sample mean value for Cfengine 4.	

Start of the confidence interval of the sample mean difference (C1) 5.	

Sample mean difference 6.	

End of the confidence interval of the sample mean difference (C2) 7.	

; LO G I N : Fe b rua ry 201 0	 Pu ppe t a n d Cfe ngin e Com pa re d	 23

The following graphs are produced by the package Sciplot [7] in R. The error
bars show the 99% confidence interval of each sample mean.

F i g u r e 1 : T i m e u s a g e fo r t h e s i x t a s k s

Workload Measurement Puppet mean Cf. mean C1 Mean difference C2

Permissions conv. Execution time 14.80s 1.18s 13.54s 13.63s 13.72s

Content conv.e Execution time 14.85s 1.43s 13.24s 13.42s 13.6s

Hosts conv. Execution time 28.44s 1.21s 26.19s 27.23s 28.27s

Permissions ver. Execution time 14.28s 1.25s 12.82s 13.04s 13.25s

Content ver. Execution time 14.32s 1.23s 12.92s 13.09s 13.27s

Hosts ver. Execution time 21.52s 1.11s 20.30s 20.41s 20.53s

Permissions conv. cpu seconds 11.03s 0.24s 10.77s 10.79s 10.81s

Content conv. cpu seconds 11.03s 0.36s 10.64s 10.67s 10.69s

Hosts conv. cpu seconds 10.50s 0.32s 10.16s 10.18s 10.19s

Permissions ver. cpu seconds 11.04s 0.23s 10.78s 10.8s 10.8s

Content ver. cpu seconds 11.03s 0.34s 10.67s 10.69s 10.72s

Hosts ver. cpu seconds 17.97s 0.32s 17.61s 17.65s 17.68s

Permissions conv. forced cswitch 1861 150 1595 1711 1827

Content conv. forced cswitch 1918 159 1644 1759 1874

Hosts conv. forced cswitch 3194 155 2929 3039 3148

Permissions ver. forced cswitch 1933 151 1675 1782 1889

Content ver. forced cswitch 1967 160 1708 1808 1907

Hosts ver. forced cswitch 3186 159 2913 3027 3142

24	 ; LO G I N : VO L . 35, N O. 1

F i g u r e 2 : C P U s e co n d s u s e d

F i g u r e 3 : N u m b e r of i n vol u n t a r y co n t e x t s w i tc h e s

Conclusion

The results show that Puppet uses considerably more time and resources
than Cfengine3 for all the measurements included in the experiment. Time
and resource usage is important, particularly in the verification phase.
Verification is done every time the agent runs, regardless of compliance.
The maximum frequency of verifications will be affected by time usage for
each verification. The scope of the verified configuration in the experiment
is small compared to what can be the case in real production environments.
Clearly, time usage of verifications will limit the frequency of verifications
when the scope increases.

Generally it is also desirable to have low resource consumption on adminis-
trative processes that run regularly, both from an environmental and from a
capacity point of view.

; LO G I N : Fe b rua ry 201 0	 Pu ppe t a n d Cfe ngin e Com pa re d	 25

The experiment shows that usage of Puppet involves a major tradeoff with
respect to time and resource consumption compared to Cfengine3 for the
operations that were measured.

Of course, there are many factors to consider when choosing configuration
management tools. The differences of time and resource consumption might
be ignorable to some. The results of this experiment serve as a supplement,
broadening the understanding of the differences between these two popular
configuration management tools.

references

[1] http://fedoraproject.org/wiki/EPEL.

[2] http://www.cfengine.org/manuals/cf3-reference.html.

[3] http://cfengine.com/pages/whatIsCfengine.

[4] http://www.gnu.org/software/time/.

[5] http://reductivelabs.com/products/puppet/.

[6] http://www.r-project.org.

[7] http://cran.r-project.org/web/packages/sciplot/index.html.

[8] http://en.wikipedia.org/wiki/Student’s_t-distribution.

[9] http://www.usit.uio.no.

[10] D.J. Lilja, Measuring Computer Performance: A Practitioner’s Guide (Cam-
bridge University Press, 2000).

