
46 ; L O G I N : V O L . 3 0 , N O . 2

N I C K S T O U G H T O N

update on standards
Nick is the USENIX Standards Liaison and represents
the Association in the POSIX, ISO C, and LSB working
groups. He is the ISO organizational representative
to the Austin Group, a member of INCITS commit-
tees J11 and CT22, and the Specification Authority
subgroup leader for the LSB.

nick@usenix.org

At the end of last year, the USENIX Board
of Directors asked me to prepare a report
for ;login: on the activities in the world of
formal standards in 2004.

And a very busy year it’s been.

For two years or so, since the Austin Group revised
the POSIX standard completely, the majority of activi-
ties have been centered on maintenance. Maintenance
is a good thing; the fact that since 2001 we have
addressed hundreds of problem reports against the
3700+ pages of POSIX, as well as publishing two
Technical Corrigenda, shows that the standard is
being used. People are reading it carefully and asking
hard questions of the form “Did you really mean to
say this?” Sometimes the answer is “yes,” sometimes
it’s “no,” but every question is carefully reviewed ,
and if necessary new text is written to clarify the
meaning.

Having the standard freely available online (see
http://www.unix.org/single_unix_specification/) helps
enormously in spreading the use of POSIX: no system
implementer or application developer can excuse
nonconformance with “I couldn’t afford the stan-
dard.” Additionally, the relative ease of licensing the
text means that open source implementations have
started to adopt the actual standard text for their man
pages; both FreeBSD and the Linux Man Page project
have licensed it for this purpose. Increasingly, open
source solutions set POSIX conformance as a deliber-
ate objective.

POSIX is about to embark on its next major revision.
This year will see the development of material suit-
able for inclusion in POSIX as Open Group specifica-
tions, IEEE specifications, or ISO Technical Reports.
Then, during 2006, this new material will be worked
into the core document and published, probably in
2007. Work here includes fixing some of the more
controversial items from the maintenance process,
adding new interfaces widely used in GNU utilities
but missing from POSIX, and handling convergence
with other ISO standards (see the LSB discussion
below).

The Linux Standard Base

POSIX is all well and good for people working in soft-
ware at the source level and looking for portability.
However, there is still a substantial market for closed
source applications. Although Linux has undergone a
meteoric rise in popularity over recent years, the lack
of proprietary software is still seen as a stumbling
block for enterprises that equate “proprietary” with

“commercial.” The Free Standards Group (FSG) has been developing a very differ-
ent sort of standard to help address this problem: the Linux Standard Base (LSB).
The LSB is an Application Binary Interface (ABI) standard, whereas POSIX is an
Application Programming Interface (API) standard.

The LSB ABI allows an application developer to build an application in such a way
that the binary will run in the same way on any conforming implementation. You,
as an application developer, can feel sure that your conforming application will run
on any conforming distribution. The ABI deals with issues such as versions of
libraries, the value of certain macros, and so on. Much of the detail of what a partic-
ular interface does is left to some underlying specification such as POSIX.

Although the LSB is heavily based on POSIX, with most of its interfaces (excluding
C++) coming from that source, there are a few notable differences between some
implementations of these interfaces. In particular, POSIX may specify one behavior,
but glibc or some GNU utility has implemented a subtly different behavior. POSIX
is in a position to dictate how a conforming implementation should behave. The
LSB, on the other hand, is an ABI standard, describing how something has been
implemented rather than how something should be implemented.

A good example is the open system call. POSIX states clearly that open “shall fail if
. . . [ENXIO:] The named file is a character special or block special file, and the
device associated with this special file does not exist.” However, the Linux kernel
returns ENODEV in this case, rather than ENXIO. If you are writing an application
that cares about the value of errno (i.e., tries to perform some sort of error recovery
for certain values of errno), then you’ll need to test for both values for this case.

One of the goals of the next POSIX revision is to see whether any of these differ-
ences could be resolved by careful wording in POSIX. The LSB is also looking to see
how many of these differences it can remove. Clearly, this also requires support of
the upstream maintainers, the folks who write and support glibc, the Linux kernel,
the various GNU utilities, etc. If code changes are required to achieve conformance
to POSIX, how many existing applications will be broken? Developing standards
can sometimes be a veritable tightrope walk between competing requirements.

Moving Toward Standardization

At the beginning of 2004, the LSB was almost ready to release version 2.0, a major
overhaul of version 1.3. Version 2.0 contains several new libraries, notably, the
standard C++ library. Many Independent Software Vendors (ISVs) had asked for
C++ support in the LSB; it was one of the most common reasons people said that
previous versions of the LSB were not useful.

One of the criteria for inclusion in the LSB is “best practice.” You have to remember
that standards are not typically at the leading edge of technology development.
Good standards document existing practice, finding a common ground for multiple
competing similar interfaces. It turns out that the C++ ABI is not yet particularly
stable. GCC has had an unfortunate habit of changing the ABI for C++ with almost
every release. When the LSB started the work of documenting the C++ ABI, GCC
was at version 3.2. Midway through the LSB development, along came version 3.3,
with a subtly altered ABI. Almost all the vendors said, “We are going to base our
next product on GCC 3.3,” so the LSB followed suit and upgraded the ABI specifi-
cation to be based on GCC 3.3. Guess what: just as the LSB was about to release,
GCC came out with 3.4, a new ABI.

To complicate matters further, the ISO (International Organization for Standards)
had decided in 2003 that they wanted some standard “in the Linux space” to help
keep up their relevance. The FSG was engaged in all of the discussions concerning
this, and they proposed that the LSB was an appropriate answer.

; LO G I N : A P R I L 2 0 0 5 U P DATE O N STA N DA R D S 47

Having the LSB become an International Standard like POSIX and ISO-C would help
cement the position of Linux as an acceptable enterprise-level operating system. The
ISO’s Publicly Available Specification (PAS) process offers a way to transform stan-
dards developed by other groups into full-scale International Standards: first, the
submitting organization is vetted and voted on by the members (countries), and
then the document is submitted and goes through a six-month ballot to become an
International Standard.

The FSG was accepted as a PAS submitter on October 31, 2003. They then had
twelve months to submit a document. The plan was to submit 2.0 when it was pub-
lished, which at that time was expected to be around February 2004.

Two factors then kicked in simultaneously: first, the C++ ABI instability issue, with
distribution vendors arguing as to which version represented “best practice.” The
word “best” was originally supposed to mean “most widely used.” In other words, if
nine distributions were using GCC 3.3 and one was using GCC 3.4, then 3.3 was the
“best.” Of course, we all know there’s another meaning to “best”—the motivation
for the changes in the ABI from 3.3 to 3.4 was that 3.3 was buggy! The other thing
that acted to delay an early release of LSB 2.0 was evaluating it in terms of “This is
going to ISO: is it as good as it deserves to be?”

The answer to that last question landed directly on my own shoulders. I had to say
to the LSB workgroup, “You know, this isn’t a truly wonderful piece of work when
you look at it in the light of an ISO standard.” Thus started six months or more of
hard slog to review and fix some of the inconsistencies, ambiguities, and other
potential problems so that the FSG could submit it before 10/31/2004.

We made it on both fronts. Version 2.0 was published at the end of August, with the
C++ material still based on GCC 3.3, but separated into a distinct module. That
module was excluded from the material submitted to ISO but remained a required
part of the FSG’s certification program for LSB 2.0. To date, there have been 11 dif-
ferent products (distributions) certified against 2.0.

Since the C++ module was based on an outdated, buggy version of the GCC ABI, a
roadmap was made for upgrading to GCC 3.4’s ABI during the first quarter of 2005.
It looks as though this version of the LSB (which will be called LSB 3.0, since the
ABI itself has changed), will indeed have been published by the time you’re reading
this.

Meanwhile, the six-month ISO ballot is in progress. It started November 10, 2004,
and finishes May 10, 2005. Votes here are by country. The U.S. has a vote, as do 21
other member countries (see http://www.jtc1.org under “Membership”). The proce-
dure is somewhat complex: each member country is responsible for putting together
its national body recommendation, but there are no overall rules as to how this rec-
ommendation is made. The U.S. does it one way, the U.K. another, and Australia yet
another. On May 10, each national body sends its vote to the ISO secretariat in
Zurich.

A country can vote yes, yes with comments, no (which must include substantive
reasons), or abstain. The project editor has to address any no vote’s comments, and
doing so may change that no to a yes.

After the ballot has closed and the project editor has called and held a ballot resolu-
tion meeting to produce a “disposition of comments” report, the final votes are
counted. If more than two-thirds of the votes are yes and fewer than one-quarter no,
the document becomes a numbered International Standard. POSIX is ISO/IEC 9945,
C is ISO/IEC 9899, and the LSB is destined to become ISO/IEC 23360.

As the LSB gathers momentum, we are starting to see public attacks on it from some
organizations whose revenues could be directly affected by the widespread adoption
of Linux at the enterprise level. This is proof positive that we are doing The Right
Thing (TM).

48 ; L O G I N : V O L . 3 0 , N O . 2

