
A D A M T U R O F F

practical perl

E R R O R H A N D L I N G P AT T E R N S
I N P E R L

Adam is a consultant who specializes in using Perl to
manage big data. He is a long-time Perl Monger, a
technical editor for The Perl Review, and a frequent
presenter at Perl conferences.

ziggy@panix.com

H A N D L I N G E R R O R S I S T H E B A N E O F
any program. In some programming lan-
guages, error handling is tedious to do
properly, so we often forget to do it, or we
do it improperly. In Perl, there are a few
common idioms for handling errors that
are both robust and easy to use.

I’m a big fan of design patterns in software develop-
ment. Through patterns, we can talk intelligently
about the code we write, the modules we use, and the
behavior (and misbehavior!) of the software we come
across on a regular basis. Patterns are a vocabulary
that lets us focus on the big picture and ignore the
meaningless high-level or low-level details.

In thinking about software design patterns, many
people reach for the book Design Patterns: Elements of
Reusable Object Oriented Software, written by Erich
Gamma et al. However, patterns are a deep topic, and
there is much more to know about patterns than is
found in that book.

The concepts behind patterns did not start with one
book describing better ways to build object-oriented
software. In fact, the idea started with an alternative
view of architecture put forth by Christopher Alexan-
der in the 1970s. Alexander’s premise was that we
need a common language to discuss architectural
principles—something the customer, the engineer,
and the architect can all understand. When specialists
focus on minutiae or elevate professional fashion over
customer needs, we all lose.

Alexander’s key insight is that we can work together
to build open-ended vocabularies that describe the
systems we build—whether they are buildings,
towns, cars, airports, compilers, network monitoring
software, or Web-based applications. In the realm of
software, patterns are about describing the behavior
of a module of code or an entire system. Once you
start to see a pattern, it is easy to see the pattern
repeated. From there, it is easier to repeat the good
patterns and avoid the bad ones.

Patterns in Perl

Patterns came to software development through
analysis of object-oriented systems. A classic pattern
describes how to construct an object with a specific
set of known behaviors, and how to combine compat-
ible objects based on the patterns they implement.
This school of design is quite prevalent within the
Java community. If you have ever come across an iter-
ator or a factory, you’ve seen some of the behaviors
described in Design Patterns in use.

; LO G I N : F E B R UA RY 2 0 0 5 P R AC TI C A L P E R L 47

48 ; L O G I N : V O L . 3 0 , N O . 1

But patterns are not restricted to objects or any other domain. Because patterns
are an open-ended vocabulary, we can use patterns to describe different levels of
software, ranging from a single line of code all the way up to a large, complex
project like a database server or a Web-based content management system. Pat-
terns are everywhere in software.

For a concrete example, look at the following patterns for error handling. If you
are familiar with C, you may have seen this idiom for opening a file:

FILE *fp;
fp = fopen("/my/file", "r");
if (fp == NULL) {

return -1; // ERROR - could not open file
}

In Perl, there’s always more than one way to do it. If you learned how to pro-
gram in C, you can program in Perl in a C-like manner:

open(my $fh "/my/file");
if (!$fh) {

return -1; ## ERROR - could not open file
}

In these brief snippets, there is exactly one operation being performed: opening
a file. If there is any problem opening this file, then the operation terminates
immediately.

Here is a more natural expression of the same basic intent in Perl:

open(my $fh "/my/file") or return -1;

In this formulation, there is one operation to perform, and it is expressed all at
once in a single statement. Furthermore, the intent of the whole statement reads
quite naturally: do something or recover immediately. Not only is this statement
easier to write, but it is much easier to read. Consequently, this statement is also
easier to remember and get right the first time.

In many simple scripts, it is common or even advisable to terminate immedi-
ately at the first point of failure. This pattern is known as “open or die,” and it is
one of the most common patterns in Perl programming:

open(my $fh "/my/file") or die "Cannot open '/my/file'\n";

Using “open or die” may seem extreme at first, but it provides a simple way to
express a set of necessary preconditions for a script. For example, consider a
script run periodically by cron that needs to read and write some files. If any of
those files are missing or cannot be created, the script cannot proceed. If it does
continue to run, it could generate bad output, or, in the worst case, do damage
to a running system. Using the “open or die” pattern allows this script to open
all of its files and succeed, or gracefully terminate when any one of its files can-
not be opened.

Error Handling in Perl

How does the “open or die” pattern work? The key is the ultra-low-precedence
or operator that connects the two statements. If there is any true value whatso-
ever on the left half of the expression (in this case, the result of an open opera-
tion), it will return that value immediately and not evaluate the right-hand side
(die). The right-hand side (die) will be executed only if the left-hand side
(open) returns a false value.

This pattern uses the or operator instead of the higher-precedence || (Boolean or)
operator, for a couple of reasons. First, it is clearer when reading the code. Sec-
ond, because or is an ultra-low-precedence operator, there is no ambiguity:

; LO G I N : F E B R UA RY 2 0 0 5 P R AC TI C A L P E R L 49

The first statement *must* be "open" with two parameters
The second statement *must* be "die" with one parameter
open FH, "/my/file" or die "Cannot open '/my/file'\n";

Using the higher-precedence || operator would be ambiguous to Perl:

Is the second parameter "/my/file" ||
or is it an open followed by || die?
open FH, "/my/file" || die “Cannot open '/my/file'\n";

Another important characteristic of “open or die” is the behavior of the left-
hand side of the expression, open. If open encounters any error whatsoever, it
will return a false value. For any other result, it will return some true value.
Therefore, the die clause in this statement will execute only when there is an
open failure. (The actual cause of the failure can be found elsewhere, in the spe-
cial variable $!.)

The true power in this small pattern is not that it is a concise expression of the
proper behavior for opening files, but in its general utility in similar contexts.
Most Perl functions that handle system interaction provide the same behavior—
return false on error, true on success. This includes functions like chdir, mkdir,
unlink, and so on. For conciseness, Perl programmers generally call this overall
pattern “open or die.”

In C, the pattern is just the opposite—return zero (false) on success, and a non-
zero error code (true) on error. This leads to cumbersome idioms like the exam-
ple above with fopen. In Perl, the system built-in function behaves in a C-like
manner, returning false (zero) on success, and a true (non-zero) value on fail-
ure. The result is similar to the cumbersome “system and die” pattern, since the
system built-in adheres to this C-like behavior:

system "/bin/date" and die "Can't find '/bin/date'";

(The “system and die” pattern is generally regarded as broken. Larry Wall has
declared that this unfortunate misfeature will be fixed in Perl 6.)

Recovering from Errors in Perl

Using the “open or die” pattern is a great way to terminate your script at the first
sign of error. But sometimes you do not want to terminate your script. Rather,
you need to exit immediately from a subroutine, break out of a loop, or just dis-
play a warning message.

Even though this pattern is commonly called “open or die,” the right-hand side
doesn’t need to call die. Any recovery action fits the pattern, including return,
warn, or even print.

Below is a sub that takes a filename and returns all non-blank lines that do not
start with a hash character (i.e., comments). If it cannot open a file, it exits
immediately and returns false:

sub get_lines {
my $filename = shift;
my @lines;

open(my $in, $filename) or return;
while (<$in>) {

next if m/^$/; ## Skip blank lines
next if m/^#/; ## Skip comment lines
push (@lines, $_);

}

return @lines;
}

50 ; L O G I N : V O L . 3 0 , N O . 1

Carp, Croak, and Friends

Functions like die and warn can report exactly where an error occurred. That
may work for scripts, where the cause of the error is likely nearby. But this
behavior does not work very well when using modules. Although your program
may have issued a warning or terminated at line 135 of SomeModule.pm, that
message may not mean anything to you, especially if you installed SomeModule
from CPAN.

It makes more sense to identify the location of the code that led to the error in
SomeModule.pm. This is more likely the cause of the problem, especially when
using well-tested modules. This is the problem that the Carp module solves.
Carp is a standard module that is bundled with Perl which provides the error-
reporting functions carp and croak, which can be used in place of warn and die.
When these functions display a warning or a termination message, they report
the location where the current sub was called, not the location where an error
was encountered (i.e., the location of the call to carp or croak).

Here is a simple program that demonstrates the difference between these two
sets of functions:

1: package Testing;
2: use Carp;
3:
4: sub test_carp {
5: carp "Testing carp";
6: }
7:
8: sub test_warn {
9: warn "Testing warn";
10: }
11:
12: package main;
13:
14: Testing::test_carp();
15: Testing::test_warn();

And here is the result:

Testing carp at test.pl line 14
Testing warn at test.pl line 9

Note that carp focuses attention on where the sub test_carp was called, while
warn focuses attention within the body of test_warn. This is why module
authors should prefer the functions provided by Carp over the standard built-in
functions.

Returning Errors in Perl

Patterns for handling errors are important. By understanding when and how
functions like open return errors, we can use a clear and concise pattern for
handling errors when they occur. The beauty behind this pattern lies in its
extensibility. Not only can it be used with many recovery strategies, but it can be
used with any sub that signals errors the same way open does.

Recall for a moment how open communicates errors: It returns a false value on
failure, and some true value on success; any error message will be returned
through a pre-defined variable ($! in this case). Any other sub that behaves in
this manner can be used with the “open or die” pattern.

This process sounds simple enough, except that there is some subtlety involved.
Remember that there are precisely five false values in Perl:

; LO G I N : F E B R UA RY 2 0 0 5 P R AC TI C A L P E R L 51

n The number 0
n The string “0”
n The empty string
n The empty list
n The undefined value (undef)

There is another, subtle wrinkle in Perl behavior. Subroutines can be called in
one of two possible ways: in scalar context and in list context. In list context,
there is precisely one false value, the empty list. All other values produce a list of
one element, which is true. The following program illustrates the differences:

sub return_empty {return;}
sub return_string {return "";}
sub return_zero {return "0";}
sub return_0 {return 0;}
sub return_undef {return undef;}

Test scalar return values
($_ = return_empty) and print "True (scalar empty)";
($_ = return_string) and print "True (scalar string)";
($_ = return_zero) and print "True (scalar zero)";
($_ = return_0) and print "True (scalar 0)";
($_ = return_undef) and print "True (scalar undef)";

Test list return values
(@_ = return_empty) and print "True (list empty)";
(@_ = return_string) and print "True (list string)";
(@_ = return_zero) and print "True (list zero)";
(@_ = return_0) and print "True (list 0)";
(@_ = return_undef) and print "True (list undef)";

As described above, this program produces the following output:

True (list string)
True (list zero)
True (list 0)
True (list undef)

These rules may sound complicated, but they really aren’t. They help Perl do the
right thing in a variety of common circumstances. This program demonstrates
that if you want to return a false value in all circumstances, just use a simple
return statement—it will return false whether you, the caller, uses list or scalar
context. Therefore, any sub that uses this behavior can plug right into the “open
or die” pattern with no extra effort.

Alternative Error Mechanisms in Perl

Returning a false value is often sufficient for signaling an error. But sometimes
there are legitimate values returned that happen to be false but do not signal an
error. Consider a sub that returns a series of numbers that could include zero, or
a sub that returns a series of strings which could include the empty string. In
these situations, it may not be feasible to say that “any false value” signals an
error. In these cases, it is generally better to say that “the undefined value” sig-
nals an error.

A common example of this pattern is reading lines from a file:

while (<>) {
...

}

The purpose of looping over a file line by line is to process one line at a time.
However, sometimes it is possible to read an empty string from a file, or a line
containing the single character 0. These values should not signal end-of-loop.

52 ; L O G I N : V O L . 3 0 , N O . 1

What is actually happening here is that Perl sees that construct and interprets it
as this instead:

while (defined($_ = <>)) {
...

}

This behavior allows Perl to act as we expect it should. The construct will read
every line from the file, including blank lines and lines that contain the number
zero. The undefined value will be returned when there is an error reading from
the file, such as when trying to read past the end-of-file. Thus, Perl can read
each and every line from a file (regardless of whether that line is “true” or not)
and terminate when reaching end of file.

You can reuse this pattern in your programs as well. If you need to return false
values (like zero) from a sub but still want to plug into the “open or die” pat-
tern, just remember to check to see whether the return value is defined. If it is
not, then some error must have occurred:

defined(add_user()) or die "Cannot add user";

Conclusion

Handling errors is a key aspect of any program. In Perl, there are many patterns
for handling errors. If you are comfortable programming in a C-like manner, you
can use the error-handling patterns that feel comfortable to you. However,
native Perl patterns for handling errors are simpler to use and easier to get right
the first time.

Corrections

In my last column on Class::DBI, I used this idiom to edit a temporary file:

sub get_input {
open (my $fh, ">/tmp/library.data.$$");
....

}

Jeremy Mates wrote in, identifying this as a security flaw. I want to thank him
profusely for pointing this out. Jeremy goes on to say:

Insecure temporary file handling problems are unfortunately far too com-
mon in code still being written and used, despite being trivial to eradicate
through the use of secure alternatives such as mktemp(1) and various
modules in Perl, such as File::Temp.

For soliciting input from an external editor, I recommend the use of my
Term::CallEditor module, which uses File::Temp to create a secure tempo-
rary file that an editor can be run on.

Thanks, Jeremy.

