
{

THE USENIX MAGAZINE

December 2003 • volume 28 • number 6

#
The Advanced Computing Systems Association

inside:
SECURITY

Perrine: The End of crypt() Passwords

. . . Please?

Wysopal: Learning Security QA from

the Vulnerability Researchers

Damron: Identifiable Fingerprints in

Network Applications

Balas: Sebek: Covert Glass-Box Host Analysis

Jacobsson & Menczer: Untraceable Email Cluster Bombs

Mudge: Insider Threat

Singer: Life Without Firewalls

Deraison & Gula: Nessus

Forte: Coordinated Incident Response Procedures

Russell: How Are We Going to Patch All These Boxes?

Kenneally: Evidence Enhancing Technology

BOOK REVIEWS AND HISTORY

USENIX NEWS

CONFERENCE REPORTS

12th USENIX Security Symposium

Focus Issue: Security
Guest Editor: Rik Farrow

6

1. Tom Perrine and Devin Kowatch, “Teracrack:
Password Cracking Using Teraflop and Petabyte
Resources,” SDSC, 2003, http://security.sdsc.edu/
publications/teracrack.pdf and http://security.
sdsc.edu/publications/teracrack.ps.

Vol. 28, No. 6 ;login:

by Tom Perrine
Tom Perrine is the
Infrastructure Man-
ager for Sony's
Playstation Product
Development organi-
zation, where he
watches over online
games, software
developers, artists,
and musicians. In
former lives he has
been a computer
security researcher,
system administrator,
and operating sys-
tem developer for
universities, compa-
nies, and govern-
ment agencies.

tep@scea.com

Introduction
In the security realm, there is a tendency on the part of of some system
administrators and many vendors to ignore “theoretical” vulnerabilities.
Inertia is one of the driving forces behind the “full disclosure” movement, a
group that believes the only way to get a vendor (or anyone else) to fix
something is to release working exploits, so that vulnerabilities cannot be
dismissed as theoretical and therefore safe to ignore. It is a recurring issue
that it is often difficult to convince vendors (and some system administra-
tors) that vulnerabilities are “real” before exploits appear in running code.

For example, for over 30 years the UNIX password protection system has depended
on the UNIX crypt() function to protect 8-character ASCII passwords. Assumptions
about computational and storage resources that were made 30 years ago are no longer
valid. The UNIX crypt() function has been overtaken by computing technology and
should no longer be relied on for password protection.

Although some UNIX and all Linux vendors now offer alternatives, such as longer
passwords and stronger hash functions, crypt() passwords are still often required for
compatibility with existing account management software or in multi-vendor environ-
ments where not all systems support those alternatives. Stronger systems are the norm
in the open source operating system community, with Linux and the BSDs all support-
ing stronger hash functions such as MD5. However, there are still many commercial
UNIX variants where crypt() is either the only option or the only option with full sup-
port from the vendor, or where using MD5 is incompatible with layered software for
that platform.

Until now, quantifying the risks of continuing to depend on this outdated function has
been via “back of the envelope” calculations based on key space size and theoretical
performance figures for various hardware platforms. The evidence of Moore’s Law and
academic analysis of cryptographic algorithms have been insufficient to push vendors
into supporting stronger systems by default. One of the goals of this project is to drive
the last nail into the coffin of the UNIX crypt() function for 8-character passwords,
using real-world results. Hopefully, the persuasive power of weaknesses demonstrated
by running code and a large database of precomputed password hashes may accom-
plish that.

Toward this end, over the past few years system administrators and security practition-
ers at the San Diego Supercomputer Center (SDSC) have investigated the security of
the crypt() function in light of ever-increasing computing and storage capabilities.

Our recent paper1 describes the most recent large-scale password cracking project
undertaken at the SDSC. This project examined the use of teraflop computing and
petabyte storage capabilities to attack the traditional UNIX crypt() password system.

The paper presents results from applying high-performance computing (HPC)
resources such as a parallel supercomputer, abundant disk, and a large tape archive
systems, to precompute and store crypt()-based passwords that would be found using

the end of crypt()
passwords…
please?

http://security.sdsc.edu/
http://security

common password-cracking tools. Using the Blue Horizon supercomputer at SDSC,
we found that precomputing the 207 billion hashes for over 50 million passwords can
be done in about 80 minutes. Further, this result shows that for about $10,000 anyone
should be able to do the same in a few months using one uniprocessor machine.

This article provides a summary of that work, focusing on the results and implications
instead of the technology. Full details of the computing hardware, software, and stor-
age resources are available in the paper.

Project History, Motivation, and Goals
There have been two major password-cracking projects at SDSC. The first, Tablecrack,
was intended to quickly determine which UNIX accounts, if any, had passwords that
were easily guessed. Tablecrack was used for several years at SDSC to identify vulnera-
ble passwords.

During the use of Tablecrack, it became apparent that there were other interesting
questions to investigate, some of which are discussed below. The current project, Ter-
acrack, explores some of these questions, as well as takes advantage of the advances in
computing that have occurred since the original Tablecrack project began in Decem-
ber 1997.

Both Tablecrack and Teracrack exploit a novel time/space trade-off to take advantage
of very large data storage capabilities, such as multi-terabyte disk systems, on password
cracking.

The last and most recent goal of Teracrack was to pursue a “world land-speed record”
for password cracking, combining multi-teraflop computing, gigabit networks, and
multi-terabyte file systems.

For the purposes of this project, easily guessed passwords are defined as those in a spe-
cific list, which is generated using common, publicly available methods (e.g., Alec
Muffet’s Crack)2 from publicly available word lists (dictionaries).

The effort in this specific dictionary attack is not an exhaustive search of all possible
eight-character passwords. For our purposes, it is not necessary to try all passwords,
just all those that are likely to be tried by an attacker using commonly available soft-
ware. In real life, this set of passwords is defined by the software likely to be used by an
attacker, e.g., Crack 5.0a or perhaps John the Ripper.3 By testing the user’s password
against the set of guesses likely to be tried by this software, we can make a reasonable
determination about the user’s password falling to an intruder’s attack.

The Time/Space Trade-Off
A novel part of both Tablecrack and Teracrack is the reversing of the time/space trade-
off. Traditionally, it has been considered infeasible to precalculate (and store) all possi-
ble (or reasonable) passwords, forcing the attacker to generate (test) passwords on
demand.

In fact, at least one earlier paper on password cracking4 did discuss implementations
of precomputed passwords. However, given the hardware (DEC 3100 CPUs and 8mm
tape) of 1989, it took several CPU-weeks to produce hashes on 8mm digital tape for
only 107,000 passwords, and it took several hours to check those tapes when searching
for hashes. Clearly, it would have been impractical to try to store the hashes for mil-
lions of passwords, given disk and tape technologies available at the time.

7December 2003 ;login:

2. “Crack, a Sensible Password-Checker for
UNIX,” http://www.users.dircon.co.uk/
~crypto/download/c50-faq.html.

3. John the Ripper,
http://www.openwall.com/john/.

4. D.C. Feldmeier and P.R. Karn, “UNIX Pass-
word Security — Ten Years Later,” Proceedings
of Crypto ’89, in Lecture Notes in Computer
Science, vol. 435, pp. 44–63.

l
SE

C
U

R
IT

Y

THE END OF CRYPT() PASSWORDS l

http://www.users.dircon.co.uk/
http://www.openwall.com/john/

Vol. 28, No. 6 ;login:

These original assumptions live on in most password-cracking software, including
Crack and John the Ripper. These systems assume that there is limited (disk) storage
and that each password hash should be calculated from a candidate password, checked
against the actual target hash, and then discarded; the computed hashes are not saved
for reuse.

Results and Conclusions
First, it is obvious that the original UNIX crypt() is completely obsolete. In today’s
computing environment, it should certainly not be the default password hash algo-
rithm. It could be strongly argued that the algorithm should not be available at all, that
only MD5 or stronger algorithms should be used.

WHAT ARE THE COMPUTATIONAL AND STORAGE REQUIREMENTS
FOR SUCH ATTACKS?
We have shown that using the resources present at SDSC it is possible to precompute
and save the 207 billion hashes from over 50 million of the most common passwords
in about 80 minutes. This means that all hashes for the interesting passwords for a sin-
gle salt can be computed in about 20 minutes. Further, on a per-CPU basis, the Power3
CPUs used in Blue Horizon are by no means the fastest available. In particular, the
Intel Celeron provided very good numbers in our crypt timings. If, as we believe, the
numbers above are related to the actual performance of Teracrack, then a modern x86
(1-2GHz) should be able to hash our word list for one salt in far less than 20 minutes.5

To save 207 billion hashes requires 1.5 terabytes of storage. We had this much storage
in a network file system, connected over high-speed network links. We also have a
multi-petabyte tape archive to provide long-term storage for the hashes. The I/O
bandwidth required for a full 128-node run is an average of 80 megabytes per second;
however, in that time a single process only averages 80-82 kilobytes per second. Fur-
ther, running the post-processing requires 2.27 terabytes of storage, and the resultant
.pwh files will require 2.26 terabytes. Note that this space is not cumulative, but just
represents different amounts at different times as the work is done.

These requirements are probably out of the reach of typical machines used by a single
attacker. We were trying to exploit the resources available to us, and thus were trying to
make this run in as little real time as we could. There are other methods we could have
used that would have been less demanding. A more patient attacker could use fewer
resources and still launch a successful attack in a reasonable amount of time, such as a
few weeks.

ARE LARGE-SCALE DICTIONARY ATTACKS FEASIBLE FOR ATTACKERS WITHOUT
ACCESS TO HIGH-PERFORMANCE COMPUTING RESOURCES?
IS A DISTRIBUTED (COOPERATIVE) EFFORT FEASIBLE?
The computational requirements for precomputing all the hashes are high, but not
prohibitively so. For a single Power3 CPU, the bulk encryption phase should take
about 60 days. It should take a single CPU on a Sun-Fire 15K about 13 days to do the
post-processing. Ignoring the storage and I/O bandwidth issue, the time required for
bulk encryption and post-processing phases should decrease linearly for every CPU
added to it.

The storage requirements are also “reasonable.” With the current availability of IDE
disk drives larger than 200GB, perhaps in IDE RAID arrays, the storage requirements

5. A test run indicates that this is the case.

8

It is obvious that the original
UNIX crypt() is completely
obsolete.

are also accessible. In fact, SDSC has experimented with low-cost “terabyte-class” file
servers.6 We have recently (November and December 2002) purchased 1.2-terabyte
PC-based RAID file servers for around $5,000. We have been quoted prices below
$10,000 for 2.8-terabyte file servers.

The I/O bandwidth should not be a problem for the smaller machines which are more
likely to be used by an attacker. Even a dual-processor 1.5GHz x86 machine would
generate less than 2MBps of output. If the machine only writes to local disk, there will
be no network-bandwidth problems.

There are also several strategies for coping with the total amount of storage space
required. Most involve either distributing the computation or making a space/time
trade-off.

n By distributing the computation across several machines, the storage space
required on each machine would be greatly reduced. It would also allow using
existing hardware, with the addition of a large IDE hard drive. For example, a
cooperative effort with eight machines could add a 200GB IDE hard drive to each
machine. This would provide 1.6TB of storage, which is enough to store the out-
put of the bulk encryption phase. Using the next technique, it will be enough to
handle the post-processing phase as well.

n The post-processed output requires 50% more storage space than the raw hashes.
This is only because the output also contains a reverse pointer that allows retriev-
ing the password as part of the table lookup. Having this pointer is not necessary,
even for an attacker who is trying to recover the password. The post-processing is
still needed to sort the hashes (and speed lookup times), but the final space require-
ment will be 1.5TB instead of 2.26TB if the reverse pointer is left out. Instead of
using the precomputed hashes to retrieve passwords, the attacker can use them to
figure out which passwords can be recovered with minimal effort. Here the
attacker uses the precomputed hashes on a stolen password file to determine
which hashes are in the attacker’s dictionary. Once it has been determined which
passwords will be found, it will take 20 minutes or less per salt to recover the pass-
word. As it only takes one password to compromise an account, a single 20-
minute run should suffice. Using this method, however, an attacker can still
recover over 30 passwords in a single day. The savings is from not wasting time
attacking strong passwords.

n We did not investigate compression at all. However, in Tablecrack, it was found
that an algorithm like the one used by Crack to compress dictionaries showed
promise.

n While over a terabyte of disk storage is still expensive, 200GB is very affordable,
and enough space to store precomputed hashes for 400 salts. While having 400
salts is not as good as having all of them, all it takes is one broken password.

Thus, it seems safe to say that large-scale dictionary attacks are feasible for either a very
patient single attacker, an attacker with a farm of compromised machines, or a collec-
tive of cooperating attackers. What we were able to do in hours, a network of attackers
could easily do in days.

ARE THERE COLLISIONS (MULTIPLE PASSWORDS THAT PRODUCE
THE SAME HASH) IN THE PASSWORD SPACE?
We found two types of collisions. First, there were some words in our dictionary which
contained characters with the high-bit set. There were 24 such collisions in each case

9December 2003 ;login:

6. SDSC, “A Low-Cost Terabyte File Server,”
https://staff.sdsc.edu/its/terafile/.

l
SE

C
U

R
IT

Y

THE END OF CRYPT() PASSWORDS l

https://staff.sdsc.edu/its/terafile/

Vol. 28, No. 6 ;login:

the two colliding words only differed in one character. Also in each case the differing
characters were the same in the lower seven bits. These collisions are due to the way
crypt() makes a key from the password, by stripping off the high bit, and concatenating
the lower seven bits of each byte to form a 56-bit key. The lesson from these collisions
is that there is no benefit from including characters which use the high bit in a user
password, even if your version of UNIX supports this.

Second, we found one “real” collision. By this we mean two words that differ in more
than just the lower seven bits of each byte, which hash to the same value. This occurs
with the words $C4U1N3R and SEEKETH, under the salt 1/. Both words hash to ChER-
hgHoo1o. The lesson from this is that although there are collisions in the crypt algo-
rithm, and they do reduce the usable key space, they are relatively rare and this is likely
not a real-world concern. Quantifying the exact number of collisions would require a
dictionary equal to the key size.

WHAT ARE THE NONTECHNICAL (SOCIAL, ETHICAL, AND LEGAL) ISSUES
INVOLVED IN MAKING THE RESULTS OF THIS PROJECT PUBLICLY AVAILABLE?
This question has been at the heart of both the Tablecrack and Teracrack projects and
was not adequately addressed by either.

With Tablecrack we examined the issue and made a decision to only store password
hashes, and not include the “back pointers” to the original passwords. This decision
was mostly to address storage concerns, but also made it at least slightly more difficult
for attackers, even if they had access to our password hashes. At that time, we consid-
ered that the most likely misuse of the Tablecrack data would be by an insider, due to
the difficulty in moving the large data sets outside of SDSC. We expected that even if
the attacker could determine sets of crackable passwords, we would have a good
chance of detecting the resulting attacks on the identified vulnerable passwords.

While designing Teracrack, we realized that data storage and CPU performance had
advanced to the point that even a small set of cooperating attackers, or an attacker
with moderate resources, could independently duplicate our work in days or weeks.
This changes the issues considerably.

We have investigated several ways to make our results available for system administra-
tors to check their own password hashes for weak passwords. None of the ways is com-
pletely satisfactory, for various reasons:

1. We started by looking at providing a Web interface, such as a search engine: sub-
mit a Web form with a UNIX password hash and we could tell you whether or
not the hash was from a weak password. This has problems in terms of back-end
lookup performance, online storage, and our complete inability to prevent this
system from being abused by an attacker. Such an interface, if it existed, would
quickly succumb to the dreaded “slashdot effect” and become useless.

2. It was suggested that we could improve the Web interface idea by occasionally
returning “weak” for a strong password. This would cause any attacker to occa-
sionally waste CPU time trying to crack an “un-crackable” password. For the
legitimate user, we would occasionally influence them to change a password that
was not weak. It can be argued that it is never a bad idea to influence a user to
change a password, but this is only true if they don’t replace a strong password
with a weak one.

3. We then decided that the problem was authenticating the user of any system we
might build. We decided that we could probably find a way to manually vet users,

Even a small set of . . .
attackers, or an attacker with
moderate resources, could
independently duplicate our
work.

10

registering people whom we could identify and decide we trusted as users of our
system. Although we could generate a list of well-known individuals, and indi-
viduals who were personally known to us, this obviously does not scale. If this is
still accessed via a Web server, the problem of ad hoc query performance remains.

4. Our last thought experiment combines the ideas of user registration and bulk
lookups. We could register the PGP keys of people we trust not to abuse the sys-
tem. These people could send formatted email messages, signed with the regis-
tered keys. We could batch all the requests from all the users in each 24-hour
period into a subset of lookups. This would have several advantages. It would
allow us to batch queries by salt, so that we would have to make only one pass
through each salt’s file. Additionally, if the hash files were stored in HPSS, we
would only need to retrieve the files of the salts that were in at least one query.
With fewer than a thousand or so queries in a batch, it is likely that we would not
need to retrieve more than half of the per-salt files.

Unfortunately, this system still suffers from problems of scale in handling user sub-
scriptions, problems of policy in determining who may use the system, and the cost of
actually operating such a system.

In the end, it is not clear how we can make the resulting data publicly accessible. Even
if we can satisfy our own concerns, there would be liability issues if it could be shown
that our system was used by an attacker to mount a successful attack against someone’s
weak passwords.

Yet all of this may be moot, as we have shown that this work can be recreated by a
determined, patient attacker.

For ourselves, using a batch mechanism to submit the information from SDSC’s pass-
word files will allow us to find weak passwords in a timely fashion, until we have com-
pletely eliminated the use of crypt() passwords on all our systems.

Future Work
There are six main areas in which we would like to pursue this project further:

1. Performance tuning for better scalability. We would like to attempt a few meth-
ods for reducing or eliminating the runtime connection to the number of nodes.
Also, there are performance tweaks which show promise but were nonfunctional
at publication time. Some of these include asynchronous I/O and dividing the
word list rather than the salts.

2. Moving the software to emerging hardware platforms. SDSC is currently
installing a new system that may offer up to 34 teraflops, with scaler integer
performance at least 30 times that of Blue Horizon. This system will have very
different cache, main memory, and network and I/O performance.

3. Public access to check for weak passwords. We would like to allow subscribers to
check their site’s passwords against our precomputed hashes. Thus subscribers
could verify that they have no passwords in the Crack dictionary, without need-
ing to invest in the resources to run Crack. Even though we have identified some
of the problems above, there should be some way to make this service available
for legitimate use.

4. Measurement of different-sized word lists. We would like to try measuring run-
times for word lists which are both larger and smaller. The larger word list would

11December 2003 ;login:

l
SE

C
U

R
IT

Y

THE END OF CRYPT() PASSWORDS l

Vol. 28, No. 6 ;login:

likely come from adding foreign-language dictionaries to the initial dictionary.
The smaller word lists would simply be subsets of our current word list.

5. Algorithms other than the traditional DES-based UNIX crypt(). We would like to
try precomputing an effective number of passwords for other algorithms, includ-
ing SHA-1 and MD5. Precomputing the Microsoft “LANMAN” hashes would be
particularly easy, as the passwords are limited to uppercase and the hash is not
salted. This would effectively be a massively parallel “L0phtCrack.”

6. Investigating crypt() performance on x86. The x86 architecture seems to run
crypt() very quickly, but just how quickly depends on a variety of factors. We
would like to examine factors such as cache and CPU core versions. However,
since we are arguing that crypt() should be eliminated, we should actually focus
on the performance of MD5-based hashes instead.

Acknowledgments
This article is based on the Teracrack paper, which would not exist without the signifi-
cant Teracrack development work by Devin Kowatch, and the contributions by the sys-
tem administration staff at SDSC, especially Jeff Makey, the creator of “Tablecrack.”

Availability
The code used for this paper is publicly available at http://security.sdsc.edu/software/
teracrack. It is covered under the U.C. Software License, which allows source code
access and is free for noncommercial use.

12

http://security.sdsc.edu/software/

