
; LO G I N : D ecem b e r 20 0 9 h A rD e N I N G Th e we b wITh N OscrI P T 21

G i o R G i o m a o n e

hardening the Web
with NoScript

Giorgio Maone is CEO and CTO of InformAction, a
software development and IT consulting firm based
in Italy. He’s the author and main developer of
NoScript, a popular open source solution enhancing
browser security.

g.maone@informaction.com

n o s c r I p t I s a p o p u l a r s e c u r I t y
add-on for Firefox and other Web browsers
based on Mozilla technology. Although it
is mainly known for providing easy fine-
grained script blocking at the domain level,
NoScript pioneered several innovative and
unique client-side countermeasures against
emergent Web-based threats, such as Cross-
Site Scripting (XSS), Cross-Site Request Forg-
ery (CSRF), and UI redressing (also known
as “clickjacking”), which had previously
believed to be addressable on the server side
only.

Default Deny, easy Allow

Since its very first release (May 2005 [1]),
NoScript’s core feature has been whitelist-based
selective activation of “executable” Web content.
JavaScript and browser plugins containing script-
ing interpreters and just-in-time compilers, such as
Sun’s Java, Adobe’s Flash, or Microsoft’s Silverlight,
have turned the Web, which had been originally
intended as an interlinked collection of static docu-
ments, into a rather anarchic executable platform
with loose or nonexistent security checks. The
same-origin policy (stating that active Web content
on a certain site must not be allowed to access data
or execute code from a different site) and sand-
boxing mechanisms (meant to prevent active Web
content from reaching out of the browser and inter-
acting with the underlying system) have long been
the only security constraints enforced by brows-
ers on Web-based “programs,” but they get violated
very often, because of design flaws or implementa-
tion bugs.

Design flaws, responsible for “structural” vulner-
abilities such as XSS, CSRF, or UI redressing, are
very unlikely to be fixed in a satisfactory way, be-
cause of compatibility concerns: their mitigation
is delegated to Web development “good practices”
recommendations, doomed to remain almost al-
ways unheard or misunderstood. Implementation
bugs, often allowing malicious Web content to es-
calate privileges and compromise a user’s account
or system, are the reason why Web browsers and
their plugins are bound to impressively tight patch-
ing and updating cycles, which are indispensable
to keep an acceptable degree of security [2]. Unfor-
tunately, the rise of a florid zero-day vulnerabilities
black market, full disclosure stunts, corporate rules
slowing down or banning automatic updates, leg-

22 ; LO G I N : vO L . 3 4 , N O. 6

acy compatibility needs, and other factors can significantly widen the expo-
sure window of many users to unpatched browser and plugin vulnerabilities,
which have quickly become a major venue of malware propagation.

Nearly every security vulnerability that has been affecting the browser or its
plugins so far could be mitigated or even, more often than not, completely
neutered by disabling JavaScript or, when applicable, the vulnerable plugin.
In fact, almost all the security advisories about exploitable browser flaws
play the “Disable JavaScript” card as the only possible workaround until a
patch is available. However, in the modern Web, where many sites and ap-
plications rely on JavaScript-based techniques (e.g., DHTML and AJAX) to
enhance users’ “experience” or even to implement their basic functionality,
this simple and effective countermeasure is often impractical.

But what if you had a quick and easy way to enable JavaScript and poten-
tially dangerous plugins only on those sites you trust, either permanently or
just when you need to? This is exactly what NoScript has been conceived
for: enforcing a “Default Deny” policy on active Web content, yet providing
users with the ability to whitelist trusted domains on the fly as needed, by
popping up a contextual menu and selecting the proper “Allow some.trusted.
domain.com” command. A subtle non-modal notification bar is displayed on
the bottom of pages where active content has been disabled, to remind you
that some script might need to be allowed if the site doesn’t work properly.
This feedback system has been carefully designed to be as discreet as possi-
ble and never get in your way, especially on those Web sites which do work
fine even if scripting is disabled. NoScript neither begs for attention nor re-
quires any user interaction: it tries to avoid the trap of training users to per-
mit everything, an effect that modal security questions (“Allow this?” “Block
that?”) are often accused of causing.

Site-level permissions for active Web content actually had a venerable pre-
cursor in Microsoft Internet Explorer 6’s “Security Zones” [3], and about
nine months after NoScript’s appearance, Opera 9 provided a user interface
for configuring “Site specific preferences” [4], including JavaScript, Java, and
Plugins. However, IE’s Zones, being mainly oriented to enforcing corporate
policies, are buried deep inside the Internet Options panel and quite hard to
configure for end users, while Opera’s implementation, albeit user-friendlier,
lacks any contextual feedback system and the ability to discriminate among
third-party imported scripts, both required for effective security-grade script
management.

Deflecting reflective XSS

Assuming that the whitelist policy for active content execution is effectively
enforced and cannot be violated—NoScript’s implementation has never
been broken so far—is there still any way for malicious code to run against
a user’s will? Sadly, the answer is yes: quite obviously, it is sufficient for the
malicious code to be injected in any of the whitelisted sites. This can be
achieved by hacking the Web server that hosts the site or, much more fre-
quently, through a Cross-Site Scripting (XSS) attack.

XSS vulnerabilities affect those Web applications which don’t properly es-
cape their input when it is echoed back as (X)HTML output: this allows
script fragments crafted by the possibly malicious user controlling the input
to be executed by the browser in the context of the vulnerable site. Accord-
ing to studies by the Web Application Security Consortium [5] and White-
Hat Security [6], corroborated by live data from the XSS Project [7], this
kind of vulnerability is the most prevalent in Web application security and

; LO G I N : D ecem b e r 20 0 9 h A rD e N I N G Th e we b wITh N OscrI P T 23

affects an overwhelming majority of Web sites, from social networks to on-
line banking applications, no matter how popular and/or resourceful they
are. Of course, XSS lowering the effectiveness of script blocking is a minor
concern compared to its overall impact: XSS attacks can be used to silently
steal credentials, perform stealth financial transactions impersonating a
logged-in user, or set up “perfect” phishing attacks (undetectable, since the
fake page comes from the real domain).

The painful awareness of these threats and the complete lack of initiative
by the browser vendor against them, being considered at the time a server-
side only problem which could never be mitigated on the client side, ig-
nited the development of the first in-browser XSS filter, which was publicly
released as a NoScript component called InjectionChecker in March 2007.
InjectionChecker examines any cross-site HTTP request for HTML docu-
ments, looking for HTML or JavaScript fragments that could be injected in
the destination page. If one is found, the request gets sanitized by stripping
out the potential payload before it’s sent. Initially considered with skepticism
by both security researchers and browser vendors, this approach quickly
demonstrated its reliability and effectiveness against Type 0 (DOM-based)
and Type 1 (Reflective) XSS attacks. The main limitation of the earliest In-
jectionChecker versions, which were based exclusively on pattern matching,
was a moderately high false-positive rate. However, after some development
iterations, the analysis algorithms underwent a radical overhaul: by lever-
aging the browser’s JavaScript interpreter itself (SpiderMonkey) in order to
discriminate non-trivial and syntactically valid script injections from in-
nocuous but suspect request data, newer versions managed to reduce the
false-positive rate near to 0. Still, even though extremely rare, a cross-site
request might legitimately include some valid HTML or JavaScript fragment
and therefore trigger the InjectionChecker. However, this residual issue is al-
leviated by the non-blocking design of the filter which, rather than prevent-
ing the possibly attacked page from loading or brutally disabling its scripting
capabilities, just sanitizes the request, modifying the bare minimum for the
attack to fail: this approach usually keeps the landing page functional. Fur-
thermore, the issued warning message is non-modal (like every notification
from NoScript) and gives the user an option to examine the original request
and replay it unfiltered, if it is deemed safe. Finally, exceptions for safe ori-
gins or targets can easily be configured to handle specific situations.

The success of NoScript’s XSS filters probably encouraged browser vendors
to approach this problem with fewer prejudices. In fact, even if more than
one year later, Microsoft revealed that an XSS protection subsystem, impres-
sively resembling NoScript’s InjectionChecker, was being added to Internet
Explorer 8 [8], and in September 2009 Adam Barth announced a similar
development effort in progress for the open source Chromium browser on
which Google Chrome is based [9]. Notwithstanding, both Microsoft’s and
Google’s solutions appear quite limited compared to NoScript’s: since they
act on the page rather than on the request, they’re unable to neutralize Type
0 (DOM-based) XSS and, at least in Microsoft’s case, new XSS vulnerabilities
can be introduced by the neutering routine itself, when it modifies the land-
ing document’s contents.

ClearClick vs Clickjacking

In September 2008 Jeremiah Grossman (WhiteHat Security) and Robert
“RSnake” Hansen (SecTheory) generated lots of buzz when, requested by
Adobe, they canceled a speech scheduled for the World OWASP AppSec
conference in New York. A new exploitation technique they were going

24 ; LO G I N : vO L . 3 4 , N O. 6

to present, dubbed “clickjacking,” implied many more critical conse-
quences than initially thought, if combined with an otherwise minor flaw
in the Flash browser plugin [10]. As was revealed after Adobe had fixed its
 plugin-specific issue, a remote attacker could easily modify the local Flash
privacy settings and start spying on a user’s activity through his microphone
or Webcam [11].

While speculations about the nature of this mysterious attack flourished,
some observers deduced from the available information that, even if the spe-
cific exploitation scenario was indeed new and spectacular, the underlying
vulnerability was a known one, endemic in all the modern browsers but still
underestimated (or, better, understated, because no obvious solution could
be deployed without drastically breaking the Web as we know it): UI re-
dressing [12]. This is the problem definition as put by Google’s browser se-
curity expert Michal Zalewski:

A malicious page in domain A may create an IFRAME pointing to an ap-
plication in domain B, to which the user is currently authenticated with
cookies. The top-level page may then cover portions of the IFRAME with
other visual elements to seamlessly hide everything but a single UI button
in domain B, such as “delete all items,” “click to add Bob as a friend,” etc.
It may then provide [its] own, misleading UI that implies that the button
serves a different purpose and is a part of site A, inviting the user to click
it. Although the examples above are naive, this is clearly a problem for a
good number of modern, complex Web applications. [13]

UI redress/clickjacking, in its simplicity, is actually much more faceted and
difficult to approach than it seems: variants may target same-site plugin con-
tent (as in the famous Adobe case) rather than cross-site documents, the vic-
tim UI can be rendered transparent by abusing the CSS “opacity” property
rather than by being covered by the parent malicious site, keyboard strokes
might be solicited rather than clicks, and so on. In spite of the fact that
NoScript, as noted by Jeremiah Grossman in his early interviews before full
disclosure, provided protection against his Flash-based clickjacking exploit
by default and against the more general scriptless UI redress attacks if users
enabled the “Forbid IFrames” option, the latter configuration was much too
inconvenient to be recommended to the general public.

There was clearly a need for a specific countermeasure, which had not been
conceived yet. So on October 7, 2008, after a week-long design and coding
marathon, a prototype of the ClearClick NoScript module could be finally
released [14]. ClearClick’s concept is almost as simple as UI redressing it-
self: whenever a mouse or keyboard interaction is engaged with a cross-site
framed document or an embedded plugin object, event processing gets tem-
porarily suspended while two screenshots of the involved item are com-
pared: one taken from the top-level window (reproducing the user’s point
of view), the other taken after isolating and opacizing the event target. If
the two images match, the user can see “the naked truth” and the original
mouse or keyboard event processing is immediately resumed. Otherwise,
the situation is considered suspect because the event target is concealed,
transparent, or otherwise not clearly visible: a warning is issued, showing
both the screenshots for easy visual verification and allowing the user to
judge if the interaction needs to be aborted or not.

Some months later Microsoft announced with a fanfare [15] that “clickjack-
ing protection” was being added to IE8, but it was quickly exposed [16] as
an “X-Frame-Options” HTTP header which should be sent by Web sites
when they do not want to be framed: an opt-in proposal requiring Web de-
velopers’ cooperation, then, not comparable to a client-side automatic solu-

; LO G I N : D ecem b e r 20 0 9 h A rD e N I N G Th e we b wITh N OscrI P T 25

tion like ClearClick. Nevertheless, NoScript implemented this feature as well
(just a few hours after it had been revealed) for compatibility’s sake, while
Apple’s Safari 4 and Google’s Chrome 2 followed the lead later. However, as
Google’s “Browser Security Handbook” itself explains,

So far, the only freely available product that offers a reasonable degree of
protection against the possibility is NoScript (with the recently introduced
ClearClick extension). To a much lesser extent, an opt-in defense is avail-
able [for] Microsoft Internet Explorer 8, Safari 4, and Chrome 2, through a
X-Frame-Options header, enabling pages to refuse being rendered in any
frames at all (DENY), or in non-same-origin ones only (SAMEORIGIN)
[18].

ABe Patrolling the Web’s Borders

Cross-Site Request Forgery (CSRF) had been called “the sleeping giant” [19]
back in 2006, because it was as ubiquitous as it was misunderstood. If a
Web application is vulnerable, a malicious site can perform unintended ac-
tions (e.g., to transfer funds or change router settings) on behalf of the users
who are browsing it, by silently sending a known HTTP “command” request
through one of the many automatic navigation vehicles provided by HTML
and JavaScript. The browser will automatically add authorization informa-
tion, either as a session cookie or an Authorization header. Three years later
the giant has awakened, even though some progress has been done in pre-
vention: awareness grew among developers, and support for countermea-
sures, such as explicit security tokens, has been introduced in popular Web
application frameworks.

However, as usual, mitigation is left to Web authors’ skill and good will,
with no help from the client side and no control in user’s hands. ABE (Appli-
cation Boundaries Enforcer), a project sponsored by the NLnet Foundation
[20], tries to improve this situation.

Released as a NoScript component in June 2009 [21], but planned to be also
decoupled from the Firefox add-on and ported to different browsers, ABE is
a firewall-like system which allows users, Web developers or trusted third
parties (subscription providers) to configure “Rulesets” declaring the bound-
aries of one or more Web applications. Rules are expressed using a syntax
[22] which should look natural to any system administrator. This rule, for
instance, can be used to protect Gmail against CSRF attacks:

Site mail.google.com
Accept from SELF, www.google.com
Deny

It causes Gmail (mail.google.com) to reject (Deny) all the potentially forged
requests, identified as those coming from any site except mail.google.com it-
self (SELF) and www.google.com, the domain from which the login form for
the Google application is served. Selectors can be much more fine-grained
than these, allowing glob patterns and regular expressions to be combined
in site specifications and HTTP methods to be used as criteria to match re-
quests. Documentation and examples are available on the project Web site,
http://noscript.net/abe/.

Rules are enforced at the beginning of the HTTP load cycle, preventing ma-
licious requests from doing any harm. Furthermore, since it lives inside the
browser, ABE knows the real origin of each request, allowing decisions to
reliably depend on this information but not requiring it to be leaked through
the wire, unlike the Referer HTTP header which, indeed, often gets sup-

26 ; LO G I N : vO L . 3 4, N O. 6

pressed or forged because of privacy concerns and, for this reason, must not
be trusted.

Any Web site can protect its boundaries by providing an ABE rule set in its
root directory, but they can’t override the user’s own rule sets or those on
other sites. ABE refreshes site-provided rule sets when a session starts, then
hourly, but honors HTTP caching hints if provided.

Users can add their own rules, which take precedence over the ones pushed
by trusted third parties and Web applications, by editing the initially empty
USER rule set accessible from the ABE panel, among NoScript’s Advanced
options. A visual UI to build rules contextually, during navigation, is under
development.

The only ruleset provided at installation time, labeled SYSTEM, includes just
one rule:

Site LOCAL
Accept from LOCAL
Deny

This quite obviously means that requests toward local sites (i.e., private IPv4
and IPv6 networks according to RFC 3330 and RFC 4193) are blocked un-
less they come from origins which are local as well. Such a rule automati-
cally protects intranets against scanning and CSRF attacks toward internal
Web applications and devices (e.g., router hacking) initiated from malicious
Internet Web sites [23].

Did You know?

Although often described as a “simple” script blocker, NoScript features
multiple additional security enhancements, completely independent of its
script-blocking core. Some users may believe that maintaining a whitelist of
trusted sites allowed to run scripts is too tedious in this AJAXified world.
Nevertheless, they should give NoScript a try: no matter if they give up
and resort to “Allow Scripts Globally (dangerous!),” the InjectionChecker,
ClearClick, and ABE components, unattended and silent in the background,
will keep delivering a degree of protection against XSS, clickjacking, and
CSRF that is currently unmatched by any other available Web browser tech-
nology.

referenCeS

[1] NoScript’s public release versions history: https://addons.mozilla.org/
en-US/firefox/addons/versions/722.

[2] T. Duebendorfer and S. Frei, “Why Silent Updates Boost Security,”
ETH Tech Report 302, May 5, 2009: http://www.techzoom.net/publications/
silent-updates/.

[3] http://www.microsoft.com/windows/ie/ie6/using/howto/security/setup
.mspx.

[4] “Opera 9 introduces ‘Site specific preferences’ User Interface,” February 7,
2006: http://snapshot.opera.com/windows/w90p2.html

[5] Web Application Security Consortium, “Web Application Security
 Statistics 2007”: http://www.Webappsec.org/projects/statistics/.

[6] WhiteHat Website Security Statistics Report: http://www.whitehatsec
.com/home/resource/stats.html.

; LO G I N : D ecem b e r 20 0 9 h A rD e N I N G Th e we b wITh N OscrI P T 27

[7] The XSS Project: http://www.xssed.com.

[8] Giorgio Maone, “NoScript’s Anti-XSS Filters Partially Ported to IE8,”
July 3, 2008: http://hackademix.net/2008/07/03/noscripts-anti-xss-filters
-partially-ported-to-ie8/.

[9] Adam Barth, “Reflective XSS protection (for reals this time),” Chromium-
dev Group, September 4, 2009: http://groups.google.com/group/chromium
-dev/browse_thread/thread/d2931d7b670a1722/d56bdfccfcef677f.

[10] Robert Hansen, “Clickjacking,” September 15, 2008: http://ha.ckers.org/
blog/20080915/clickjacking/.

[11] Robert Hansen and Jeremiah Grossman, “Clickjacking,” September 12,
2008: http://www.sectheory.com/clickjacking.htm.

[12] Mark Pilgrim, “This Week in HTML 5—Episode 7,” September 29,
2009: http://blog.whatwg.org/this-week-in-html-5-episode-7.

[13] Michal Zalewski, “Dealing with UI Redress Vulnerabilities Inherent to
the Current Web,” WHATWG Mailing List, September 25, 2009: http://lists
.whatwg.org/pipermail/whatwg-whatwg.org/2008-September/016284.html.

[14] Giorgio Maone, “Hello ClearClick, Goodbye Clickjacking”: http://
hackademix.net/2008/10/08/hello-clearclick-goodbye-clickjacking/.

[15] Giorgio Maone, “Ehy IE8, I Can Has Some Clickjacking Protection?”
January 27, 2009: http://hackademix.net/2009/01/27/ehy-ie8-i-can-has
-some-clickjacking-protection/.

[16] Giorgio Maone, “IE8’s ‘Clickjacking Protection’ Exposed,” January 28,
2009: http://hackademix.net/2009/01/28/ie8s-clickjacking-protection
-exposed/.

[17] Giorgio Maone, “X-FRAME-OPTIONS in Firefox,” January 29, 2009:
http://hackademix.net/2009/01/29/x-frame-options-in-firefox/.

[18] Michal Zalewski (Google Inc.), “Arbitrary Page Mashups (UI Redress-
ing),” Browser Security Handbook: http://code.google.com/p/browsersec/
wiki/Part2#Arbitrary_page_mashups_%28UI_redressing%29.

[19] Jeremiah Grossman, “CSRF, the Sleeping Giant,” September 26, 2006:
http://jeremiahgrossman.blogspot.com/2006/09/csrf-sleeping-giant.html.

[20] NLnet Foundation’s NoScript/ABE page: http://www.nlnet.nl/project/
noscriptabe/.

[21] Giorgio Maone, “Meet ABE,” June 30, 2009: http://hackademix.net/
2009/06/30/meet-abe/.

[22] Giorgio Maone “ABE—Rules Syntax and Capabilities”: http://noscript
.net/abe/abe_rules.pdf.

[23] Jeremiah Grossman, “Hacking Intranet Websites from the Outside,”
Black Hat (USA)—Las Vegas, August 3, 2006: http://www.blackhat.com/
presentations/bh-usa-06/BH-US-06-Grossman.pdf.

