
; LO G I N :  O c to b e r 20 0 9	fixing     on  a standa   rd lang   uag e fo r U N IX m an  ual  s	 19

Kr  i s ta p s  D z̆o n s o n s

fixing on a  
standard language 
for UNIX manuals
Kristaps Dz̆onsons is a graduate student  
in theoretical computer science at KTH/CSC. 
He also writes open source software, such  
as mdocml (mandoc), sysjail, and the mult  
forks of OpenBSD and NetBSD, with the  
BSD.lv Project.

kristaps@bsd.lv

“A  UN  I X  u t i l i t y  w i t h  p o o r  d o c u -
mentation is of no utility at all.” When 
sitting down to document utilities and file 
formats, devices, system calls, and games, 
there are many UNIX manual formats to 
choose from, each suffering from limita-
tions.

In this article I survey the cadre of formats and 
propose fixing on a standard, a format optimally 
serving readers and writers. I begin by defining the 
applicable environment, where manuals are writ-
ten and read, then enumerate criteria for a standard 
within that space. Among the formats surveyed, I 
determine that mdoc suffers the fewest limitations. 
mdoc is popular in BSD UNIX, but it is available 
pre-installed on any modern UNIX system, from 
GNU/Linux to Mac OS X to OpenSolaris.

First, it’s important to ask: Why doesn’t a stan-
dard already exist? In short, the current spread 
of formats—diverse as it may be—is good enough. 
UNIX users, programmers, and administrators tol-
erate the menagerie so long as the output of the 
man utility is roughly consistent. I propose that the 
benefits of fixing on a standard, from consistent 
authorship to powerful analytical tools, stipulate 
only a minimal burden of change: policy creation, 
education of authors, and slow migration from sub-
standard formats.

The troff Condition

We generally associate the man utility with docu-
mentation, but, internally, it only locates manu-
als, invokes an output formatter, then pages to 
the screen. This formatter constitutes the primary 
mechanism of manual production. UNIX systems 
overwhelmingly use troff [2] as a formatter, usually 
in the form of a modern implementation such as 
GNU troff (groff) [3], or Heirloom troff [4]. I’ll refer 
to “troff” as a stand-in term for any of these imple-
mentations.

I define a format as reasonable only if it’s accepted 
by troff with specific, documented utility for for-
matting UNIX manuals. A format is semi-reasonable 
if it’s indirectly accepted—losslessly transformed 
into an accepted form by an existing intermedi-
ate translation utility. In this study, I consider only 
reasonable and semi-reasonable formats.

An example of an unreasonable format is HTML, 
which is neither accepted by troff, losslessly trans-
latable, nor has a UNIX manual mode. The panoply 



20	 ; LO G I N :  VO L .  3 4,  N O.  5

of common word-processing formats, such as the Open Document Format 
and Rich Text Format, are similarly unreasonable.

The roff me, ms, and mm macro packages, while accepted by troff and occa-
sionally used for older manuals, are not considered as having a specific util-
ity for UNIX manuals; thus, I consider them unreasonable. texinfo [5], while 
being used for general documentation, is also not specifically used for UNIX 
manuals and is therefore unreasonable.

Criteria

I define the set of standardization criteria as follows: structural readability, 
such that end users are presented with structurally consistent output be-
tween manuals; syntactic regularity, such that machines may disambiguously 
scan and parse input; and a rich semantic encapsulation for meaningful ma-
chine interpretation of contextual data.

We’re comfortable with conventional man output: margin widths, text deco-
rations, and so on. Structural readability stipulates consistent output given 
a heterogeneous set of input documents. Syntactic regularity is both a for-
mal term, regarding grammar, and a subjective one, regarding the writer’s 
ease of composition. In this article, I focus on the former: input languages 
must be reliably machine-parseable. Lastly, semantic encapsulation requires 
the annotation of information. Meaningful manual terms, such as function 
prototypes and cross-links, must be disambiguously annotated, as machines 
cannot reliably classify context in unstructured text.

By fixing on a language that meets these criteria, we guarantee maximum, 
meaningful exposure of our manual, and we expand the end user’s docu-
mentation tool set—these days, necessarily constrained by the chaos of 
volatile conventions and irregular formats—with sophisticated tools for 
cross-referencing, formatting, and so on.

Survey: man and POD

troff accepts the “roff” type-setting language as input; however, direct usage 
of roff has been eclipsed by the use of macro packages simplifying the lan-
guage—macros, like procedural functions, are a roff language feature allow-
ing complex macro blocks to be referenced by a simple call. troff internally 
replaces these macros with roff during a pre-processing phase.

The man macro package became the first common format for creating UNIX 
manuals (predated by the mm and me packages) and established the back-
space-encoded, 78-column display style enjoyed to this day.

.SH SYNOPSIS

.B find
[\fB\-dHhLXx\fR]

F i g u r e  1 :  F r a g m e n t  of   f i n d  m a n u a l  SYN   O PSIS     s e c t i o n  a s 
fo  r m a t t e d  w i t h  m a n

The fragment in Figure 1 illustrates a manual’s synopsis section: the SH 
macro (all roff macros appear on lines beginning with the ‘.’ control char-
acter) indicates section titles, and B applies a boldface type to its argument. 
The argument string is bracketed by boldface character escapes. In general, 
man macros describe the presentation of terms.



; LO G I N :  O c to b e r 20 0 9	fixing     on  a standa   rd lang   uag e fo r U N IX m an  ual  s	 21

==head1 SYNOPSIS

B<find> S<[ B<-dHhLXx> ]>

F i g u r e  2 :  F r a g m e n t  of   f i n d  m a n u a l  SYN   O PSIS     s e c t i o n  a s 
fo  r m a t t e d  w i t h  P O D

The man format also forms the basis for the Perl “POD” (Plain Old Docu-
mentation) language, illustrated in Figure 2. POD, like man, is a presenta-
tion format.

Survey: mdoc

The other roff manual-formatting macro package is mdoc, which, beyond 
sharing common ancestry, is fundamentally different from man. Instead of 
annotating presentation, mdoc semantically annotates its terms. In Figure 3, 
for example, Op indicates an option string, usually displayed as enclosed in 
brackets, followed by a series of flags offset by the Fl macro. The proper pre-
sentation of these macros is managed by the formatter.

.Sh SYNOPSIS

.Nm find

.Op Fl dHhLXx

F i g u r e  3 :  F r a g m e n t  of   f i n d  m a n u a l  SYN   O PSIS     s e c t i o n  a s 
fo  r m a t t e d  w i t h  m d o c

Both man and mdoc are accepted natively by troff. POD is the default format 
for embedding manuals in Perl documents, and it translates directly into 
man with the perlpod utility for indirect acceptance by troff.

Survey: DocBook

The DocBook [6] suite, like troff, is a general-purpose typesetter. Un-
like troff, its input language, also called “DocBook,” is based on XML (his-
torically, SGML). DocBook has a schema for annotating UNIX manuals, 
illustrated in Figure 4, translating into man with docbook2x and docbook-
to-man for further compilation by troff.

<refsynopsisdiv>
	 <cmdsynopsis>
		  <command>find</command>
		  <arg choice=“opt”>
			   <option>dHhLXx</option>
		  </arg>
	 </cmdsynopsis>
</refsynopsisdiv>

F i g u r e  4 :  F r a g m e n t  of   f i n d  m a n u a l  SYN   O PSIS     s e c t i o n  a s 
fo  r m a t t e d  w i t h  Do  c Boo   k

The necessary complexity of processing XML demands a significant infra-
structure of compilers and schemas to correctly transform materials. doc-
book-to-man (which operates only on SGML DocBook) requires an SGML 
parser, the appropriate DTD files, and a driving script. Importantly, existing 
tools for translation only produce man-lossy transition from semantically en-
coded to presentation-encoded documents.



22	 ; LO G I N :  VO L .  3 4,  N O.  5

Evaluation

The criteria described earlier in this article were structural readability, syn-
tactic regularity, and semantic encapsulation. I noted that these criteria only 
apply to reasonable or semi-reasonable formats.

By virtue of being directly accepted by troff, mdoc and man are both emi-
nently reasonable. DocBook and POD, on the other hand, require special-
ized utilities to translate input into man. Although these utilities must in 
general be downloaded and installed, their popularity makes them readily 
available on most systems, and thus they are semi-reasonable.

The matter of structural readability may be reduced to the author’s level of 
influence on presentation. DocBook and mdoc manage presentation, while 
man and POD must be styled by the author. Given a non-uniform distribu-
tion of authors, it’s safe to say that mdoc and DocBook satisfy readability 
more readily than the presentation languages. In other words, an author’s 
control over function prototype styling will almost certainly produce varied 
output.

Syntactic regularity is both grammatical and structural. DocBook, by vir-
tue of XML, follows a context-free grammar (upon combination with the tag 
schema); mdoc, man, and POD are context-sensitive. The matter of struc-
tural regularity, on the other hand, is largely subjective; some prefer the 
terseness of roff macros, while others prefer more descriptive DocBook tags.

In general, it’s safe to say that DocBook’s context-free foundationspromotes 
its syntactic regularity above the others. The matter of structural regularity, 
while important, remains a subjective matter.

The last criterion, semantic encapsulation, is by far the most significant in 
terms of meaningful analysis of data. POD and man, as with any presenta-
tion language, are semantically opaque: beyond using heuristic analysis, the 
content of these manuals is closed to machine interpretation.

\fIvoid\fP \fBexit\fP \*(lp\fIint\fP\*(rp

F i g u r e  5 :  F u n c t i o n  p r o t o t y p e  e n c o d e d  i n  m a n

DocBook and mdoc, however, are rich with semantic meaning; by careful 
analysis of the parse tree, machines can cross-link references, group terms, 
and perform many other useful operations. Figures 5 and 6 illustrate presen-
tation and semantic encapsulation, respectively.

.Ft intmax_t

.Fn imaxabs ”intmax_t j”

F i g u r e  6 :  F u n c t i o n  p r o t o t y p e  e n c o d e d  i n  m d o c

As noted earlier, DocBook’s translation tools don’t currently produce mdoc, 
which amounts to a lossy transform. Thus, while DocBook itself may be se-
mantically rich, its intermediate format, and thus troff input, is not.

The format fitting all criteria with the fewest limitations is mdoc, featuring a 
reasonable, semantically rich language for manual data annotation. The lossy 
translation of DocBook to man, as well as its requirement of downloading 
additional processing tools, render it substandard.

The man and POD formats, as presentation languages, are opaque to ma-
chine interpretation. I consider this an insurmountable limitation, since it 
prohibits meaningful analysis of manual data.



; LO G I N :  O c to b e r 20 0 9	fixing     on  a standa   rd lang   uag e fo r U N IX m an  ual  s	 23

Adoption

The hindrance of mdoc’s widespread adoption is as much due to its poor 
exposure beyond the BSD UNIX community as to the limited semantic func-
tionality of its popular compiler, groff.

Documentation for the mdoc format is, at this time, constrained to tem-
plates, the formidable mdoc.samples manual distributed with most BSD 
UNIX operating systems, and the minimal mdoc manual in general UNIX 
systems. Furthermore, unlike man, which exports few macros, the complex-
ity of mdoc, with well over 100 available macros, makes introductory refer-
ence materials critical.

Although serving to format mdoc manuals for regular output, groff offers no 
semantic-recognition features: for example, HTML output (via grohtml) cor-
rectly cross-referencing manual references. This is a matter of groff ’s design, 
which internally translates mdoc into a presentation-based intermediate 
form, thus losing the semantic annotations of the input.

Fortunately, groff ’s limitations are being addressed by the mandoc [1] util-
ity, which exports a regular syntax tree of mdoc input (and man, within the 
limitations of presentation encoding) for analysis. The issues of good intro-
ductory documentation and exposure, unfortunately, remain unsatisfied.

Conclusion

By using mdoc to write manuals, powerful documentation analysis is made 
considerably easier—arguably, by using man, POD, or a similar presentation 
format, meaningful analysis isn’t possible at all. This is demonstrated by the 
total lack of manual analysis beyond the man, apropos, and whatis utilities, 
and various patchwork presentation services (such as man.cgi [7] and man-
2web [8]) in use today. Attractive, cross-referenced hypertext references, sec-
tion-by-section querying of local manual sets, and other possibilities arise by 
fixing on mdoc, possibilities hindered by the preponderance of presentation-
based, opaque languages.

references

[1] mdocml: http://mdocml.bsd.lv.

[2] troff: http://www.troff.org.

[3] groff: http://www.gnu.org/software/groff/.

[4] heirloom: http://heirloom.sf.net/doctools.html.

[5] texinfo: http://www.gnu.org/software/texinfo/.

[6] docbook: http://www.docbook.org.

[7] mancgi: http://www.freebsd.org/cgi/man.cgi/help.html.

[8] man2web: http://man2web.sf.net.




