
; LOGIN: AUGUST 2007 PRACTICAL PERL TOOLS: PETER PIPER PICKED A PECK OF PDFS 37

D AV I D B L A N K - E D E L M A N

practical Perl tools:
Peter Piper picked
a peck of PDFs
David N. Blank-Edelman is the Director of Technology
at the Northeastern University College of Computer
and Information Science and the author of the O’Reil-
ly book Perl for System Administration.He has spent
the last 20+ years as a system/network administrator
in largemulti-platform environments, including
Brandeis University, CambridgeTechnology Group,
and theMITMedia Laboratory.He was the program
chair of the LISA 2005 conference and one of the LISA
2006 Invited Talks co-chairs.

dnb@ccs.neu.edu

TH E ADOB E PO RTA B L E DO CUMEN T
Format (PDF) has become a lingua franca
in the business and technology world. I’d
hazard a guess that you probably read and
perhaps generate one or several PDF docu-
ments a day as part of your daily routine.
Documentation, invoices, electronic books,
copies of presentations, and awhole bunch
of other document types now commonly
live in PDF format. Even though I write this
column in plain text,when it gets typeset
for this publication, a draft proof copy
comes back tome in PDF format. I just ran a
quick check, and I find that I have 2,678 PDF
files on the laptop being used to write this
column.That laptop (aMac) treats PDF files
as a“native” format and knows how to cre-
ate and read them right out of the box.

I don’t mind swimming in documents in this for-
mat because it is an “open standard.” Adobe dis-
tributes the specifications for how PDF documents
are constructed. Everyone is free to create pro-
grams that read and write this format, with Adobe’s
royalty-free blessing. Adobe announced in January
of this year that they plan to submit the latest ver-
sion of the PDF spec (1.7) to the International Or-
ganization for Standardization (ISO) so it can be-
come a standard standard (vs. a non-standardized
standard, I suppose. Paging Nick Stoughton . . .).

The PDF format may be open and ubiquitous, but I
suspect I’m not alone in thinking about PDF files
as a kind of black-box magic. My PDF-generating
applications create PDF files, my PDF-reading ap-
plications display their contents, and that’s close to
the level of expertise I’ve desired on the subject. It
is a little like the PostScript language. I’ve had to
suss out enough PostScript to hand-edit recalci-
trant PostScript files less than ten times in my life,
and I didn’t enjoy the process. (Remind me to tell
you some day about the person I met who credibly
claimed to have written an entire Web server in
PostScript.)

With that level of technical apathy in mind, it will
make sense that this is a column about creating
and manipulating PDF files from Perl using higher-
level interfaces. If you want to forge individual
PDF XObjects yourself you’ll need to use different
Perl modules from those discussed here. If you
want to know how to work with PDF files without

knowing too much about just how they represent their data, you’ve come to
the right place.

Generating PDF Files from Perl

Let’s start with nothing and see if we can wind up with something. There
are a number of modules at the right level of abstraction for our purposes
that can create new PDF files. Two of the popular packages are PDF::API2
and the Perl bindings to the commercial (with a more limited free version)
PDFlib package. We’ll take a really quick look at how to use both of them,
starting with the free package.

PDF::API2 has an extensive list of PDF features, such as support for differ-
ent font types and graphic formats. Unfortunately, this power comes with a
little more pain than I’d prefer. The documentation assumes you already
have some PDF experience and you are just searching for the module’s
methods to make use of your experience. A simple “Hello World!” looks
like this (from the doc):

use PDF::API2;

$pdf = PDF::API2->new;

$fnt = $pdf->corefont(‘Helvetica-Bold’);

$page = $pdf->page;
$page->mediabox(‘A4’);

$gfx = $page->gfx;
$gfx->textlabel(200,700,$fnt,20,’Hello World !’);

$pdf->saveas(‘/this/new/document.pdf’);
$pdf->end;

Let’s walk through this example line by line. After loading the module and
creating a new PDF::API2 module, the first step is to request a font object.
Think of it as a pointer to the font we will use later when we draw text. It is
called a “core font” because the PDF standard blesses 14 fonts as “core
fonts”; these are always available on any system. With this in place, we cre-
ate a page object and set the MediaBox (i.e., the physical size) of that page.
We then ask for a handle into the graphics content object of that page. Using
this object, we can finally write some text onto the page. The text is placed
at coordinates 200,700 (using the wacky PDF system of 0,0 being in the
lower left of the page) and is rendered at a size of 20 points. The last two
statements save the data out to the file and destroy the PDF object.

Whew . . . and that’s a simple example. Just figuring out this little snippet of
code can run you ragged if you are not familiar with the standard PDF
nomenclature. For example, when I was first trying to understand what
$page->gfx did I found I had to consult the source code in three separate
submodules just to get the basic what, why, and wherefore for that line of
code. The documentation is equally terse on other matters; for example, the
textlabel() documentation lists its arguments, but it never says what the units
for size should be (for that, I had to go track down the official PDF specifica-
tion at http://www.adobe.com/devnet/pdf/pdf_reference.html). I’m not com-
plaining as much as I’m warning you that you may be in for a bumpy ride
with this module.

I’m not the only person who has noticed these shortcomings. There are sev-
eral helper modules that provide a less daunting face for PDF::API2. For ex-
ample, PDF::API2::Simple lets you write code like this:

38 ; LOG I N : VO L . 3 2 , NO . 4

use PDF::API2::Simple;
my $pdf = PDF::API2::Simple->new(file => ‘output.pdf’);
$pdf->add_font(‘Helvetica-Bold’); # load the font
$pdf->add_page(); # start a new page
$pdf->text(‘Hello World!’,

x => 200, y => 700,
font => ‘Helvetica-Bold’, font_size => 20);

$pdf->save();

The other approach I’d recommend exploring when it comes to PDF cre-
ation is the use of the commercial package by the German company PDFlib
GmbH (www.pdflib.com). PDFlib GmbH produces an exceptionally full-
featured library for PDF creation and modification, with bindings for many
different languages: Cobol, COM, C, C++, Java, .NET, Perl, PHP, Python,
REALbasic, RPG, Ruby, and Tcl. Its library can basically handle anything
you’d want to do relating to PDF files, including functions far beyond what
PDF::API2 can handle. If you need to do heavy-duty PDF production pro-
grammatically, this is going to be a good bet.

PDFlib GmbH also provides a “Lite” version of their product that is free for
noncommercial, personal, open source developer and research use. It is a
considerably smaller subset of the commercial offerings, but it probably can
do most of what the casual user needs. Let’s take a quick peek at how to use
PDFlib Lite from Perl.

There are two interfaces for this package we could consider using: the one
that ships with PDFlib Lite and a wrapper module for it called PDFLib,
which provides an object-oriented interface to it. The PDFLib wrapper mod-
ule was last updated three years ago, so we’re going to stick to the bundled
version for this example. To help continue the comparison we’ve already
started, let’s look at a simple “Hello World!” example using this module as
well (adapted from the example in the PDFlib Lite distribution):

use pdflib_pl;

my $pdf = PDF_new();

ask each function to return -1 if there is an error
PDF_set_parameter($pdf, “errorpolicy”, “return”);

if (PDF_begin_document($pdf, ‘hello.pdf’, ‘’) == -1) {
die ‘Unable to begin document: ‘ . PDF_get_errmsg($pdf) . “\n”;

}

612 x 792 points is US letter-sized paper
PDF_begin_page_ext($pdf, 612, 792, ‘’);

load the font (in a particular encoding)
my $font = PDF_load_font($pdf, “Helvetica-Bold”, “winansi”, “”);
if ($font == -1) {

die ‘ Unable to load font: ‘ . PDF_get_errmsg($pdf) . “\n”;
}

make it the current font
PDF_setfont($pdf, $font, 20.0);

place and print the text on the page
PDF_set_text_pos($pdf, 200, 700);
PDF_show($pdf, ‘ Hello World !’);

finish the page
PDF_end_page_ext($pdf, ‘’);

finish the document

; LOGIN: AUGUST 2007 PRACTICAL PERL TOOLS: PETER PIPER PICKED A PECK OF PDFS 39

PDF_end_document($pdf, ‘’);

be nice and destroy the pdf object
PDF_delete($pdf);

I don’t want to bore you with any more “Hello World” programs. We’ve seen
the very basics of creating PDFs from scratch. We can get more complicated
by importing images, drawing lines and shapes, and messing with text for-
matting and placement in a fairly straightforward way. Rather than going
deeper into PDF creation, I want to switch topics now so we have enough
space to cover the second activity people would like to use Perl for when
dealing with PDFs.

Manipulating Existing PDF Files with Perl

Even if you don’t need to create your own custom PDF files programmatical-
ly, you probably occasionally need to modify and manipulate existing files.
For example, if you need to send someone the answer to a question found
buried deep in the documentation, it may be better to send them just a few
pages rather than the whole 800-page manual. Going in the opposite direc-
tion, you may want to concatenate several separate documents so you can
send them as a single file to avoid confusion. It could be handy to extract all
of the images or text from a PDF file to separate files. Perhaps you’d like to
add a footer on all of the pages in an existing document with a message such
as “Highly Confidential—Eat if Captured.” All of these things and more are
available to you courtesy of the right Perl modules.

Did I say “modules”? You could use separate modules (including one of the
commercial PDFlib offerings) but there’s actually an all-singing, all-dancing
PDF manipulation module called CAM::PDF that can handle all of these
tasks for you. Let’s look at how to perform some of the tasks just mentioned
using it. Before we go on, let me slake your curiosity by saying that the
CAM:: in CAM::PDF comes from “Clotho Advanced Media,” the company
that originally developed the module.

Starting at the top of our wish list, to extract pages 1, 3, and 12 from a PDF
file, we could use something like this:

use CAM::PDF;

my $pdf = CAM::PDF->new(‘pdf_reference.pdf’);
$pdf->extractPages(1, 3, 12);
$pdf->cleanoutput(‘output.pdf’);

Yes, it is that easy. We create an object that points to the input file, tell it to
extract the right pages, and then write the document to a new file with
cleanoutput() (as opposed to save(), which will append to the original file).

Appending two files is similarly easy:

use CAM::PDF;

my $pdf1 = CAM::PDF->new(‘pdf1.pdf’);
my $pdf2 = CAM::PDF->new(‘pdf2.pdf’);
$pdf1->appendPDF($pdf2);
$pdf1->cleanoutput(‘concat.pdf’);

CAM::PDF comes with scripts to handle jpeg and text extraction and footer
addition (“stamping”), so I won’t include that code here. It comes with quite
a few utility scripts like this, so it is worth your while to check out the
package.

40 ; LOG I N : VO L . 3 2 , NO . 4

As a final postscript to this section, and as we fade into the sunset, I do want
to mention that if CAM::PDF is not your cup of tea, the other module worth
your consideration should be PDF::Reuse. PDF::Reuse’s whole raison d’être
was the desire to take an existing PDF file and use it as a template for the
creation of other PDF files. For example, you could take a small PDF file
with a picture of a business card and have it create a document with this
card repeated in columns on the page for mass printing. Another possibility
would be to send someone a customized PDF document with hyperlinks in
the body that were personalized for the particular user. You probably can
think of other ways this could come in handy. Both CAM::PDF and
PDF::Reuse will serve you well in these cases.

I hope this column has demystified the process of PDF file creation and
modification just enough so you can get what you want done without hav-
ing to devote too much of your limited brain space to PDF minutiae. Take
care, and I’ll see you next time.

; LOGIN: AUGUST 2007 PRACTICAL PERL TOOLS: PETER PIPER PICKED A PECK OF PDFS 41

